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1 January 6th

David Wagner

1.1 Enumeration

• Solving counting problems.

– Bijective / combinatorial

– Algebraic

Read: New course notes
Chapter 1, beginning of Chapter 2, beginning of Chapter 4
Examples: Fibonacci Numbers

• Initial conditions: f0 = 1, f1 = 1.

• Recurrence Relation: For n ≥ 2 : fn = fn−1 + fn−2.

n 0 1 2 3 4 5 6 7 8 9
fn 1 1 2 3 5 8 13 21 34 55

What is f101010
What is fn as a function of n?
Define the generating series,

F (x) =

∞∑
n=0

fnx
n = 1 + x+ 2x2 + 3x3 + 5x4 + 8x5 + . . .

• Get a formula for F (x)

• Use this to get a formula for fn.
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F (x) =

∞∑
n=0

fnx
n

= f0 + f1x+

∞∑
n=2

fnx
n

= 1 + x+

∞∑
n=2

(fn−1 + fn−2)xn

= 1 + x+

∞∑
n=2

fn−1x
n +

∞∑
n=2

fn−2x
n

= 1 + x+ x

∞∑
j=1

fjx
j + x2

∞∑
k=0

fkx
k

= 1 + x+ (F (x)− f0) + x2(F (x))

= 1 + x+ xF (x)− x+ x2F (x)

So F (x)(1− x− x2) = 1 + x− x
So

F (x) =
1

1− x− x2
.

Geometric Series

G = 1 + t+ t2 + t3 + · · · =
∞∑
n=0

tn

tG = t+ t2 + t3 + . . .

G− tG = 1

So

G =
1

1− t
If λ ∈ C and t = λx : 1

1−λx =
∑∞
n=0 λ

nxn

How to apply this to F (x) = 1
1−x−x2 ?

Factor the denominator 1− x− x2 = (1− α)(1− βx) for some α, β ∈ C.
(α, β are called inverse roots)
Now

F (x) =
1

(1− αx)(1− βx)
=

A

1− αx
+

B

1− βx
for some A,B ∈ C. Why? Partial Fractions.
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Determine α, β,A,B. Then

F (x) =
A

1− αx
+

B

1− βx

= A

∞∑
n=0

αnxn +B

∞∑
n=0

βnxn

=

∞∑
n=0

(Aαn +Bβn)xn

So fn = Aαn +Bβn for all n ≥ 0.

1− x− x2 = (1− αx)(1− βx)

Subs y = 1
x , multiply by y2.

y2 − y − 1 = (y − α)(y − β)

α, β =
1±

√
1− 4 · 1 · (−1)

2
=

1±
√

5

2

A

1− αx
+

B

1− βx
=

1

1− x− x2

Clear the denominator.

A(1− βx) +B(1− αx) = 1

(A+B)− (Aβ +Bα)x = 1

Compare coefficients of powers of x:

A+B = 1

Aβ +Bα = 0

Solve for A,B by linear algebra.

Aβ +Bβ = β

B (β − α) = β

B =
β

β − α
Aα+Bα = α
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A (α− β) = α

A =
α

α− β
See the notes

fn =
5 +
√

5

10

(
1 +
√

5

2

)n
+

5−
√

5

10

(
1−
√

5

2

)n

2 January 8th

Natural Numbers

N = {0, 1, 2, 3, . . . }
include zero.

Factorials
For n ∈ N :

n! = 1 · 2 · 3 · · · · · n
Binomial Coefficients
For n, k ∈ N (

n

k

)
=

n!

k!(n− k)!

Binomial Theorem
For n ∈ N :

(1 + x)n =

n∑
k=0

(
n

k

)
xk

Binomial Series
For integers t ≥ 1,

1

(1− x)t
=

∞∑
n=0

(
n+ t− 1

t− 1

)
xn

Example:

1

(1 + 3x)3
=

∞∑
n=0

(
n+ 2

2

)
(−3x)n

(
n+ 2

2

)
=

(n+ 2)!

2!n!
=

(n+ 2)(n+ 1)

2

So
1

(1 + 3x)3
=

1

2

∞∑
n=0

(n+ 2)(n+ 1)3n(−1)nxn

Combinatorial Proofs:
Let S, T be sets. Let f : S → T be a function.
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• f is injective if for all s, s′ ∈ S: if f(s) = f(s′), then s = s′.

(Every element of T is the image of at most one element of S).

• f is surjective if for all elements t ∈ T , there exists s ∈ S such that
f(s) = t.

(Every element of T is the image of at least one element of S.)

• f is bijective if it’s injective and surjective.

f : S → T is a bijection, then for every t ∈ T , there is exactly one s ∈ S
such that f(s) = t.

Inverse bijection:
f−1 : T → S

defined by f−1(t) = s if and only if f(s) = t.

Clearly
(
f−1

)−1
= f.

S and T are equicardinal if there is a bijection f : S → T .
Notation: S 
 T .
Exercise:

 is an equivalence relation.
A set S is infinite if S is equicardinal with a proper subset of S.
(i.e T ⊆ S and ∅ 6= T 6= S)
Example:
N is infinite, because

N
 {0, 2, 4, 6, . . . }

by n 7→ 2n.
Otherwise, S is finite.
Cardinality of Finite Sets

|S| =
∑
s∈S

1

Unions of Sets
|S ∪ T | = |S|+ |T | − |S ∩ T |

(For 3 or more sets: Inclusion — Exclusion).
Disjoint Unions

S ∩ T = ∅.

|S ∪ T | = |S|+ |T |.

Cartesian Products

S × T = {(s, t) : s ∈ S and t ∈ T}

Exercise:
For finite sets, S, T

|S × T | = |S| · |T |
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Lists:
A list of a set S is a sequence a1, a2, . . . , an in which each element of S occurs

exactly once.
Note: in this case, |S| = n.
Examples:

S = {1, A,#}

List of S:
1, A,#,
1,#, A,
A, 1,#,
. . .
Proposition:
If |S| = n, then S has n! lists.
Let L(S) be the set of lists of S.
We prove |L(S)| = n! by induction on n.
Basis
n = 0, 1, 2, trivial.
Step:
Notice that

L(S)

⋃
s∈S
{s} × L(S \ {s})

a1a2 . . . an 7→ (a1, a2a3 . . . an)

Note that
⋃
s∈S is a disjoint union here.

By sums and products.

|L(S)| =
∑
s∈S

1 · |L(S \ {s})| =
∑
s∈S

(n− 1)! = (n− 1)!
∑
s∈S

1 = n!

by induction

3 January 10th

Partial Lists
Let S be a finite set. |S| = n.
Let k ∈ N.
A partial list of S of length k is a sequence a1, a2 . . . , ak of elements of S,

each element of S occuring at most once.
Let L(S, k) be the set of partial lists of S of length k.
If k > n, then

L(S, k) = ∅

Proposition:
For 0 ≤ k ≤ n: |L(S, k)| = n(n− 1) · · · (n− k + 1)
Proof:
Fix k ∈ N. Go by induction on n = |S|.
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Basis:
n = k. L(S, n) = L(n). and |L(S, n)| = n!
Inductive Step:

L(S, k)

⋃
s∈S

({s} × L(S \ {s}, k − 1))

By Induction:

|L(S, k)| =
∑
s∈S
|L(S \ {s}, k − 1)|

= (n− 1)(n− 2) . . . ((n− 1)− (k − 1) + 1))
∑
s∈S

1

= n(n− 1) · · · (n− k + 1)

k-element subsets
Let B(S, k) be the set of all k-element (unordered) subsets of S.
Lemma
If S 
 T , then

B(S, k)
 B(T, k)

Proof:
Let f : S → T be a bijection.
Then F : B(S, k)→ B(T, k) is a bijection.
Let R ⊆ S be a k-element subset of S.
Define

F (R) = {f(r) : r ∈ R}

Apply this construction to f−1 to get F−1 (You check the details).
Corollary
There is a function b(n, k) such that if 0 ≤ k ≤ n and |S| = n,
Then

|B(S, k)| = b(n, k)

Proposition:
For 0 ≤ k ≤ n, we have b(n, k) =

(
n
k

)
.

Proof:
Construct a partial list, a1a2 . . . ak of S of length k as follows:

• Choose a k-element subset R ⊆ S

• Choose a list from the set L(R).

This produces every partial list in L(S, k) exactly once each.

L(S, k) =
⋃

R∈B(S,k)

L(R)
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Taking cardinalities.

|L(S, k)| =
∑

R∈B(S,k)

|L(R)|

n(n− 1) · · · (n− k + 1) =
∑

R∈B(n,k)

k!

n!

(n− k)!
= k! ·

∑
R∈B(S,k)

1

So

b(n, k) = |B(S, k)| = n!

k!(n− k)!
=

(
n

k

)
Multisets
Informally, a ”set with repeated elements”. Fix a positive integer t ≥ 1, the

number of types of element.
For 1 ≤ i ≤ t, let mi ∈ N be the number of elements of the i-th type.

µ = (m1,m2, . . . ,mt) ∈ Nt

is a multiset with t types, of size |µ| = m1 +m2 + · · ·+mt

Examples:
Skittles t = 5, types R, G, Y, O, P

{R,O,R, Y,G,G,O, P, Y,R}

(3, 2, 2, 2, 1)

How many multisets are there of size n ∈ N with t ≥ 1 types of element?
Answer: (

n+ t− 1

t− 1

)
Let M(n, t) be the set of multisets of size n with elements of t types.
Note that

(
n+t−1
t−1

)
= |B(n+ t− 1, t− 1)|

Where B(n+t−1, t−1) is the set of all (t−1)-element subsets of {1, 2, . . . , n+
t− 1}

Define a bijection M(n, t)
 B(n+ t− 1, t− 1) to prove the result.
Return to the previous example:
n = 10, t = 5, n+ t− 1 = 14, t− 1 = 4.
Bijection:

B(n+ t− 1, t− 1)→M(n, t)

Draw a row of circles of length n+ t− 1.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦◦
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Cross out t− 1 of them to indicate a subset R of {1, 2, . . . , n+ t− 1}.
Let mi be the number of circles between the (i − 1)st and i-th crossed out

circles for each 2 ≤ i ≤ t− 1
Let mi be the number of circles before the first X.
Let mt be the number of circles after the last X.
Let µ = (m1,m1, . . . ,mt).
Claim:
This construction R 7→ µ defined a bijection

B(n+ t− 1, t− 1)
M(n, t)

What is the inverse bijection?
Start with µ = (m1,m2, . . . ,mt) ∈M(n+ t− 1).
For 1 ≤ i ≤ t− 1, let si = m1 +m2 + · · ·+mi + i
Let R = {s1, s2, . . . , st−1}
Claim:
This construction, µ 7→ R is the inverse bijection.
Example:
n = 10, t = 5, µ = (2, 3, 0, 1, 4)
So (s1, . . . , s4) =
s1 = 2+1 = 3, s2 = 2+3+2 = 7, s3 = 2+3+0+3 = 8, s4 = 2+3+0+1+4 =

10

R = {3, 7, 8, 10}

Conversely, R = {3, 7, 8, 10}
Picture here.

4 January 13th

C(x) =

∞∑
n=0

cnx
n =

2− 7x+ 7x2

1− 4x+ 5x2 − 2x3

Recurrence Relation (Theorem 4.5)
Partial Fractions (Theorem 4.9)
Recurrence Relations

(1− 4x+ 5x2 − 2x3)

∞∑
n=0

cnx
n = 2− 7x+ 7x2

=

∞∑
n=0

cnx
n − 4

∞∑
n=0

cnx
n+1 + 5

∞∑
n=0

cnx
n+2 − 2

∞∑
n=0

cnx
n+3

=

∞∑
n=0

cnx
n − 4

∞∑
i=1

ci−1x
i + 5

∞∑
j=2

cj−2x
j − 2

∞∑
k=3

ck−3x
k
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By convention, let cn = 0 if n < 0. Then continue

=

∞∑
n=0

cnx
n − 4

∞∑
i=0

ci−1x
i + 5

∞∑
j=0

cj−2x
j − 2

∞∑
k=0

ck−3x
k

=

∞∑
n=0

(cn − 4cn−1 + 5cn−2 − 2cn−3)xn

Compare coefficients on LHS and RHS.
For n ∈ N,

cn − 4cn−1 + 5cn−2 − 2cn−3 =


2 n = 0

−7 n = 1

7 n = 2

0 n ≥ 3

in which cn = 0 if n < 0.
When n = 0,

c0 = 2.

When n = 1,
c1 − 4c0 = −7

c1 = −7 + 4 · 2 = 1

When n = 2,
c2 − 4c1 + 5c0 = 7

c2 = 7 + 4 · 1− 5 · 2 = 1

Initial Conditions.
When n ≥ 3,

cn = 4cn−1 − 5cn−2 + 2cn−3

Recurrence relation.

n 0 1 2 3 4 5 6
cn 2 1 1 3 9 . . . . . .

Partial Fractions:

∞∑
n=0

cnx
n =

P (x)

Q(x)

Applies only when deg(P ) < deg(Q).
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Also, assume that the constant term of Q(x) is Q(0) = 1.
Factor Q(x) to find its ”inverse roots”.

Q(x) = (1− λ1x)d1(1− λ2x)d2 · · · (1− λsx)ds

λ1, λ2, λ3, · · · , λs pairwise distinct nonzero complex numbers, d1, d2, · · · , ds pos-
itive integers: d1 + d2 + · · ·+ ds = d = deg(Q)

Then, there are d complex numbers

C
(1)
1 , C

(1)
2 , . . . , C

(1)
d1

C
(2)
1 , C

(2)
2 , . . . , C

(2)
d1

...

C
(s)
1 , C

(s)
2 , . . . , C

(s)
d1

which are uniquely determined such that

P (x)

Q(x)
=

s∑
i=1

di∑
j=1

C
(i)
j

(1− λix)j

Useful together with Binomial Series Expansion.

1

(1− αx)p
=

∞∑
n=0

(
n+ p− 1

p− 1

)
αnxn

Example:

P (x)

Q(x)
=

2− 7x+ 7x2

1− 4x+ 5x2 − 2x3

Factor the denominator.
Q(1) = 0 so x− 1 is a factor.

1− 4x+ 5x2 − 2x3 =(1− x)(1− 3x+ 2x2)

= (1− x)(1− x)(1− 2x)

= (1− x)2(1− 2x)

Inverse roots:
1 with multiplicity 2.
2 with multiplicity 1.
By Partial Fractions

P (x)

Q(x)
=

A

(1− x)
+

B

(1− x)2
+

C

(1− 2x)
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Solve for A,B,C.
Clear the denominator,

2− 7x+ 7x2 = A(1− x)(1− 2x) +B(1− 2x) + C(1− x)2

Evaluate:

• At x = 1:
2− 7 + 7 = A · 0 +B(−1) + C · 0

So B = −2.

• At x = 1
2 :

2− 7

2
+

7

4
= A · 0 +B · 0 + C(1− 1

2
)2

C = 1

• At x = 0:
2− 0 + 0 = A+B + C

A = 2−B − C = 3

P (x)

Q(x)
=

3

1− x
− 2

(1− x)2
+

1

1− 2x

3

∞∑
n=0

xn − 2

∞∑
n=0

(
n+ 2− 1

2− 1

)
xn +

∞∑
n=0

2nxn

∞∑
n=0

(3− 2(n+ 1) + 2n)xn

So for all n ∈ N:

cn = 2n − 2n+ 1

n 0 1 2 3 4 5 6
cn 2 1 1 3 9 53

5 January 15th

Subsets and Indicator Functions
Let P(n): set of all subsets of {1, 2, . . . , n}
{0, 1}n: set of binary sequences b1b2 . . . bn of length n.
Bijection

P(n)
 {0, 1}n

S ↔ β
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Given S ⊆ {1, 2, . . . , n}
Define β = b1b2 . . . bn by

bi =

{
0 i /∈ S
1 i ∈ S

THis construction defines a function S 7→ β from P(n) to {0, 1}n
Given β = b1b2 . . . bn, define S ⊆ {1, 2, . . . , n} by S = {i ∈ {1, 2, . . . , n} :

bi = 1}.
This defines a function

β 7→ S

from {0, 1}n to P(n).
Claim:
These are mutually inverse bijection.

• S 7→ β, then β 7→ T . Prove that T = S.

• β 7→ S, then S 7→ α. Prove that α = β.

Proof: (Exercise).
B(n, k) set of all k-element subsets of {1, 2, . . . , n}.

P(n) =

n⋃
k=0

B(n, k)

is a disjoint union. Taking cardinalities

2n =

n∑
k=0

(
n

k

)
=

n∑
k=0

n!

k!(n− k)!

Binomial Theorem
Copy this argument, keeping track of the sizes of the subsets S ⊆ {1, 2, . . . , n}

in the exponent of x (an ”indeterminate”)

P(n)
 {0, 1}n

S ↔ β = b1b2 . . . bn

|S| = b1 + b2 + · · ·+ bn

Because of the bijection:∑
S∈P(n)

x|S| =
∑

β∈{0,1}n
xb1+b2+···+bn

Left Hand Side:∑
S∈P(n)

x|S| =

n∑
k=0

∑
S∈B(n,k)

x|S| =

n∑
k=0

xk
∑

S∈B(n,k)

1

13



=

n∑
k=0

(
n

k

)
xk

Right Hand Side:

∑
β∈{0,1}n

xb1+b2+···+bn =

1∑
b1=0

1∑
b2=0

· · ·
1∑

bn=0

xb1+b2+···+bn

=

1∑
b1=0

xb1
1∑

b2=0

xb2 · · ·
1∑

bn=0

xbn

= (1 + x)(1 + x) · · · · · (1 + x)

= (1 + x)n

So

(1 + n)n =

n∑
k=0

(
n

k

)
xk

Binomial Series
Let t ≥ 1 be an integer, n ∈ N.
Let M(n, t) be the set of multisets of size n with elements of t types.

µ = (m1,m2, . . . ,mt)

|µ| = m1 +m2 + · · ·+mt = n

Let M(t) =
⋃∞
n=0M(n, t)

We know that

|M(n, t)| =
(
n+ t− 1

t− 1

)
Keep track of the size of each multiset µ ∈M(t) in the exponent of x.

∑
µ∈M(t)

x|µ| =

∞∑
n=0

∑
µ∈M(n,t)

x|µ|

∞∑
n=0

xn
∑

µ∈M(n,t)

1 =

∞∑
n=0

(
n+ t− 1

t− 1

)
xn

Notice that M(t) = N× N× . . .N = Nt
So∑

µ∈M(t)

x|µ| =
∑

(m1,...,mt)∈Nt

xm1+m2+···+mt =

∞∑
m1=0

∞∑
m2=0

· · ·
∞∑
mt

xm1+m2+···+mt

∞∑
m1=0

xm1 ·
∞∑

m2=0

xm2 · · ·
∞∑

mt=0

xmt =
1

(1− x)t
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(By Geometric Series)
In conclusion, for integer t ≥ 1:

1

(1− x)t
=

∞∑
n=0

(
n+ t− 1

t− 1

)
xn

Sets and Weight Functions, Generating Series
Let A be a set (of combinatorial objects that we want to count)
A weight function is a function ω : A → N such that for every n ∈ N, the set

An = w−1(n) = {α ∈ A : ω (α) = n}

is finite.
Note that

A =

∞⋃
n=0

An

is a disjoint union.
The generating series of A with respect to ω is

A(x) = ΦA(x) =
∑
α∈A

xω(α)

Example:

• A = P(n).

• A =M(t)

Proposition:
Let A be a set with a weight function w : A → N.
If

A(x) =
∑
α∈A

xw(x) =

∞∑
n=0

anx
n

Then
an = |An|

is the number of objects in A of weight n.
Proof:

A(x) =
∑
α∈A

xw(α) =

∞∑
n=0

∑
α∈An

xw(α)

=

∞∑
n=0

xn
∑
α∈An

1

=

∞∑
n=0

|An|xn
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Sum Lemma and Product Lemma
If A ∩ B = ∅ and w : A ∪B → N is a weight function.
Then

ΦA∪B(x) = ΦA(x) + ΦB(x)

If w : A → N and v : B → N.
Define f : A× B → N by f(α, β) = w(α) + v(β).
And

ΦfA×B(x) = ΦwA(x) · ΦvB(x)

6 January 17th

Set A, weight function ω : A → N (for all n ∈ N : A = {α ∈ A : ω(α) = n} is
finite).

Generating series

A(x) = ΦA(x) =
∑
αA

xw(α) =

∞∑
n=0

|An|xn

Infinite Sum Lemma
Let {Aj : j ∈ J} be a collection of sets.
Let B =

⋃
j∈J Aj . Assume that this is a disjoint union. If i 6= j then

Ai ∩ Aj = ∅.
Let ω : B → N be a weight function.
(This restricts to a weight function on each Aj)
Then

ΦB(x) =
∑
α∈B

xω(α) =
∑
j∈J

∑
α∈Aj

xω(x) =
∑
j∈J

ΦAj
(x)

Need disjoint union in the third equal sign
Product Lemma:
Let A,B be sets with weight functions ω : A → N and v : B → N.
Define θ : (A×B)→ N by

θ(α, β) = ω(α) + v(β)

Then
ΦA×B(x) = ΦA(x) · ΦB(x)

Proof: (Notes)
String Lemma:
Let A be a set with weight function, ω : A → N such that there are no

elements of A of weight 0.
Let Ak = A×A× · · · × A
ωk = Ak → N defined by

ωk (α1, α2, . . . , αk) = ω(α1) + · · ·+ ω(αk)
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By the Product Lemma:

ΦAk(x) = (ΦA(x))
k

Notation:

A∗ =

∞⋃
k=0

Ak

a disjoint union.
Define ω∗ (α1, α2, . . . , αk) = ω (α1) + · · ·+ ω (αk)
Then

ΦA∗(x) =

∞∑
k=0

ΦAkΦAk(x) =

∞∑
k=0

(ΦA(x))
k

=
1

1− ΦA(x)

How do we know that ω∗ is a weight function?

A = {0, 1}

ω(i) = i

In A∗ : (0, 0, . . . , 0) ∈ Ak.
Infinitely many σ ∈ A∗ of weight 0.
ω∗ is not a weight function.
The answer is: We don’t.
Lemma:

ω∗ : A∗ → N

is a weight function if and only if A0 = ∅: there are no elements in A of weight
0.

Proof:
(Notes / Exercise).
Example:
A = {0, 1}, ω(i) = i

ΦA(x) = x0 + x1 = 1 + x

1

1− ΦA(x)
=

1

1− (1− x)
= − 1

x
= −x−1

2.3 Compositions
Definition:
A composition γ = (c1, c2, . . . , ck) is a finite sequence of positive integers

each ci is a part.
The length is k, the number of parts.
The size is |r| = c1 + c2 + · · ·+ ck.
Examples:
Composition of size 4:
(4), (3, 1), (1, 3), (2, 2), (2, 1, 1), (1, 2, 1), (1, 1, 2), (1, 1, 1, 1)
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Let Cn be the set of compositions of size n.
Let

C =

∞⋃
n=0

Cn

For all n ∈ N, what is |Cn|?
What about compositions in C of a given length k ∈ N?

• k = 0 : ε = () empty composition

length 0, size 0, generating series 1x0 = 1.

• k = 1: γ = (c) for some c ∈ {1, 2, . . . , } = P
Generating series:

∞∑
c=1

xc = x1 + x2 + x3 + · · · = x

1− x

• For general k ∈ N:

Composition of length k is the set

Pk = P× P× . . .P

|γ| = c1 + c2 + · · ·+ ck

Product Lemma applies.

Generating Series (
x

1− x

)k
All compositions

C =

∞⋃
k=0

Pk

and P has no elements of weight 0.
String lemma applies.

ΦC(x) =
∑
k=0

ΦPk(x) =

∞∑
k=0

(
x

1− x

)k
=

1

1−
(

x
1−x

) =
1− x
1− 2x

= 1 +
x

1− 2x

= 1 +

∞∑
j=0

2jxj+1 = 1 +

∞∑
n=1

2n−1xn

In conclusion, for any n ∈ N,

|Cn| =

{
1 n = 0

2n−1 n ≥ 1

18
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Compositions
r = (c1, c2, . . . , ck) a sequence of positive integers.
Set of all compositions is C = P∗ =

⋃∞
k=0 Pk where P = {1, 2, 3, . . . }

Generating series is
∑∞
k=0

(∑∞
p=1 x

p
)k

By the Sum and Product Lemma.

=

∞∑
k=0

(
x

1− x

)k
=

1

1−
(

x
1−x

) =
1− x
1− 2x

= 1 +
x

1− 2x

Variations on this theme:

• What are the allowed values for this single part?

• What are the allowed lengths of the composition?

Then apply Sum and Product Lemmas.
Examples:
A: compositions in which all parts are ≥ 3 (any length is okay).

• Allowed values for one part: P = {3, 4, 5, . . . }
Generating series for one part

∞∑
p=3

xp = x3 + x4 + x5 + · · · = x3

1− x

• For k ≥ 0 parts: Generating series
(
x3

1−x

)k
by Product Lemma.

• k ∈ N is arbitrary.

A(x) =

∞∑
k=0

(
x3

1− x

)k
=

1− x
1− x− x3

= 1 +
x3

1− x− x3

Examples:

B : compositions in which each part is ≡ 1( mod 3)

– allowed parts: P = {1, 4, 7, 10, . . . } Generating Series: x+ x4 + x7 +
x10 + · · · = x

1−x3

– For k ∈ N parts: generating series is
(

x
1−x3

)k
by Product Lemma.

– So, by the Sum Lemma

B(x) =

∞∑
k=0

(
x

1− x3

)k
=

1

1−
(

x
1−x3

) =
1− x3

1− x− x3
= 1+

x

1− x− x3
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Notation:

For a power series G(x) =
∑∞
n=0 gnx

n.

Let [xn]G(x) = gn denote the coefficient of xn.

Notice that [xn]xdG(x) =

{
0 n < d

[xn−d]G(x) n ≥ d
IN the two examples A and B, if n ≥ 3, then

[xn]A(x) = [xn]

(
1 +

x3

1− x− x3

)
= [xn]x3

1

1− x− x3

= [xn−3]
1

1− x− x3

= [xn−2]x
1

1− x− x3

= [xn−2]

(
1 +

x

1− x− x3

)
= [xn−2]B(x)

Let An,Bn be the compositions of size n in A or B, respectively.

From (*) if n ≥ 3, then
|An| = |Bn−2|

Huh!

Can you explain this combinatorially by finding a bijection An 
 Bn−2?

A(x) =
1

1−
(
x3

1−x

) =
1− x

1− x− x3
=

∞∑
n=0

anx
n

By Linear Recurrence Relations

an − an−1 − an−3 =


1 n = 0

−1 n = 1

0 n ≥ 2

(Where an = 0 if n < 0).

a0 = 1

a1 − a0 = −1, a1 = 0

a2 − a1 = 0, a2 = 0
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n 0 1 2 3 4 5 6 7 8 9 10
an 1 0 0 1 1 1 2 3 4 6 9

A9 B7
(9) (7)

(6, 3) (4, 1, 1, 1)
(3, 6) (1, 4, 1, 1)
(5, 4) (1, 1, 4, 1)
(4, 5) (1, 1, 1, 4)

(3, 3, 3) (1, 1, 1, 1, 1, 1, 1)

Subsets with Restrictions

Examples:

For n ∈ N, how many subsets of {1, 2, . . . , n} are there with no two con-
secutive numbers (a and a+ 1)? Call it rn.

Eg:

n = 4:

∅

{1}, {2}, {3}, {4}

{1, 3}, {1, 4}, {2, 4}

r4 = 8

.

n 0 1 2 3 4 5
rn 1 2 3 5 8

Turn this question about subsets into a question about compositions.

Let S ⊆ {1, 2, . . . , n} with no two consecutive elements.

1 ≤ s1 < s2 < · · · < sk ≤ n

For convenience, let s0 = 0 and sk+1 = n+ 1.

For 1 ≤ i ≤ k + 1, let ci = si − si−1. and γ = (c1, c2, . . . , ck+1).

Example:

n = 11 and S = {3, 4, 7, 9}.

s0 < s1 < s2 < s3 < s4 < s5

0 < 3 < 4 < 7 < 9 < 12
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γ = (3, 1, 3, 2, 3)

From the pair (n, S), we produced γ.

Claim: This is a bijection between the set U = {(n, S) : n ∈ N and S ⊆
{1, 2, . . . , n}} and the set C \ {ε} of nonempty compositions.

U ⇒ C \ {ε}

(n, S) ⇐⇒ (c1, c2, . . . , cl) = γ

|S| = l − 1

Note that:

|γ| =
k+1∑
i=1

ci

=

k+1∑
i=1

(si − si−1)

= sk+1 − s0
= (n+ 1)− 0 = n+ 1

8 January 22nd

U = {(n, S) : n ∈ N and S ⊆ {1, 2, . . . , n}}

C \ {e} =

∞⋃
l=1

Pl

where P = {1, 2, 3, . . . } is the set of nonempty compositions.
Bijection

U 
 C \ {ε}

(n, S) ⇐⇒ γ = (c1, c2, . . . , cl)

From U to C \ {ε}
Input:
n ∈ N and S ⊆ {1, 2, . . . , n};
Say S = {s1, s2, . . . , sk} where 1 ≤ s1 < s2 < · · · < sk ≤ n
Let s0 = 0 and sk+1 = n+ 1.
Define ci = si − si−1 for all 1 ≤ i ≤ k + 1.
Output:

γ = (c1, c2, . . . , ck+1)

From C \ {ε} to U
Input:

γ = (c1, c2, . . . , cl)
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with l ≥ 1 for 1 ≤ i ≤ l − 1, define si = c1 + c2 + · · ·+ ci
Output:

S = {s1, s2, . . . , sl−1}

and
n = |γ| − 1.

In this bijection
U 
 C \ {ε}

(n, S) ⇐⇒ γ
|S| = l(γ)− 1
n = |γ| − 1
Check:

(n, S) 7→ γ

and
γ → (m,R)

Then, m = n and R = S.
Check:

γ 7→ (n, S)

and
(n, S)→ ρ

Then, ρ = γ.
Pattern: Given some subset of pairs in U .
What is the corresponding subset of C \ {ε}?
Example:
(n, S) is such that S has no two consecutive elements (a, a+ 1)

(n, S) ⇐⇒ γ = (c1, c2, . . . , cl)

(8, {1, 3, 7}) ⇐⇒ (1, 2, 4, 2)

Such pairs (n, S) correspond to compositions γ

• That are not empty

• First and last parts might be = 1

• other parts are ≥ 2.

∑
(n,S)

xn =
∑
γ

x|γ|−1

Generating series for these compositions with respect to size |γ|.
Case Analysis by length
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• l = 1: γ = (c1) with c1 ∈ P
Generating series.

∑∞
c1=1 x

c1 = x
1−x

• l = 2: γ = (c1, c2) with c1, c2 ∈ P

Generating Series:
(

x
1−x

)2
• l ≥ 3: γ = (c1, c2, . . . , cl−1, cl) with c1, cl ∈ P and ci ∈ {2, 3, 4, . . . } for

2 ≤ i ≤ l − 1

ci ∈ Q = {2, 3, 4, . . . } for 2 ≤ i ≤ l − 1

That is, γ ∈ P×Q×Q× · · · ×Q× P
Generating Series:

By the Product Lemma:(
x

1− x

)(
x2

1− x

)
. . .

(
x2

1− x

)
x

1− x

Also works for l = 2.

By the Sum Lemma, since l ≥ 1:∑
γ

x|γ| =
x

1− x
+
∑
l≥2

(
x

1− x

)2(
x

1− x

)l−2

=
x

1− x
+

(
x

1− x

)2 ∞∑
j=0

(
x2

1− x

)j

=
x

1− x

1 +
x

1− x
· 1

1−
(
x2

1−x

)


=
x

1− x

[
1 +

x

1− x− x2

]
=

x

1− x

[
1− x2

1− x− x2

]
=

x(1− x2)

(1− x)(1− x− x2)

=
x(1 + x)

1− x− x2

So ∑
(n,S)

xn =
∑
γ

x|γ|−1 =
1 + x

1− x− x2
=

∞∑
n=0

gnx
n

gn − gn−1 − gn−2 =


1 n = 0

1 n = 1

0 n ≥ 2
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g0 = 1, g1 = 2, gn = gn−1 + gn−2 for n ≥ 2.

n 0 1 2 3 4 5 6 7
gn 1 2 3 5 8 13 21 34

Chapter 3: Binary Strings
A binary string is a finite sequence of bits.

σ = b1b2 . . . bk

with each bit bi ∈ {0, 1}.
The length is l(σ) = k.
Binary strings of length k are in {0, 1}k.
Since k ∈ N, an arbitrary binary string is in

⋃∞
k=0{0, 1}k = {0, 1}∗.

General problem:
For some subset L ⊆ {0, 1}∗, determine the generating series.

L(x) = ΦL(x) =
∑
σ∈L

xl(σ) =

∞∑
n=0

|Ln|xn

where Ln = {σ ∈ L : l (σ) = n}.
Example:
If L = {0, 1}∗, then Ln = {0, 1}n. So |Ln| = 2n.
So Φ{0,1}∗(x) =

∑∞
n=0 2nxn = 1

1−2x
For any L ⊆ {0, 1}∗, |Ln| ≥ 2n, so l : L → N is always a weight function.
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Binary String
A string σ = b1b2 . . . bn in {0, 1}∗ is also called a ”word”.
A set of L ⊆ {0, 1}∗ is also called a ”language”.
A language is rational if it is produced by a regular expression. (reg. exp.)
Regular Expression is defined recursively.

• ε, 0, 1 are regular expressions.

• If A is a regular expression then so is A∗

• If A,B are regular expressions, then so are A ∪B and AB.

Regular expressions are just strings of symbols.
Example:

(0 ∪ 11)
∗

A regular expression A produces a subset A ⊆ {0, 1}∗ as follows.
(Shorthand: A .A)
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• ε . {ε}, 0 . {0}, 1 . {1}

• If A .A and B . B, then A ∪B .A ∪ B, AB . {αβ : α ∈ A, β ∈ B}
Concatenation product of A and B.

Ak = AA . . .A

concatenation power

• If A .A, then A∗ .A∗ =
⋃∞
k=0Ak

•

Example:
A = {010, 110}, B = {11, 0010}, AB = {010·11, 010·0010, 110·11, 110·0010}

is a bijection with A× B.
Example:
C = {01, 011}, D = {110, 10},
01 · 110 = 011 · 10 is produced twice in CD.
CD = {01110, 0110, 011110} is not in bijection with C × D.
Example:
(0 ∪ 1)∗ produces ({0} ∪ {1})∗ = {0, 1}∗.
All binary strings exactly once each.
(0 ∪ 01 ∪ 1)

∗
produces {0, 1, 01}∗ = {0, 1}∗

All binary strings - some are produced many times.
THe same set of string L ⊆ {0, 1}∗ can be produced by many different

regular expressions.
A regular expression is unambiguous if every string it produces is produced

exactly once.
Unambiguousnessity can be checked recursively.

• ε, 0, 1 are unambiguous. Assume that A,B are unambiguous.

A ∪B is unambiguous if and only if A ∩ B = ∅
AB is unambiguous if and only if AB 
 A× B.

A∗ is unambiguous if and only if A∗ =
⋃∞
k=0Ak

– All Ak 
 A×A× · · · × A
– Union is disjoint

Example:

• (0 ∪ 1)
∗

is unambiguous.

• (0 ∪ 1 ∪ 01)
∗

is ambiguous.

Facts we don’t need
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1. If A ⊆ {0, 1}∗ is a rational language.

Then there is some regular expression producing A that is unambiguous.

2. If A,B are rational languages, then so is

A \ B = {σ : σ is in A but not in B}

Exercise:
Show that (2) implies (1) (Recursively).
A regular expression leads to a rational function, A  A(x) recursively as

follows.

• ε 1, 0 x, 1 x

Assume A A(x) and B  B(x)

Then

– A∗  1
1−A(x)

– A ∪B  A(x) +B(x)

– AB  A(x)B(x)

Theorem:
Let A be a regular expression producing A ⊆ {0, 1}∗ leading to A(x).
If A is unambiguous, then

ΦA(x) = A(x)

Proof: (Exercise)
Sum, Product, String Lemmas.
Example:
(0 ∪ 1)

∗
and (0 ∪ 1 ∪ 01)

∗
both produce {0, 1}∗.

(0 ∪ 1)∗ leads to 1
1−(x+x) = 1

1−2x
Great!
(0 ∪ 1 ∪ 01)

∗
leads to 1

1−(x+x+x2) = 1
1−2x−x2

Bad!
Example:
(0 ∪ 11)

∗
is unambiguous leads to 1

1−(x+x2) = 1
1−x−x2

which strings are produced?

0010111001111001100 NO

0011011111100001111 YES
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Unambiguous Expressions

• Block Decompositions

0011011110011011110000110111001100

A block of σ = b1b2 . . . bn is a maximal (nonempty) subsequence of con-
secutive equal bits.

00|11|0|1111|00|11|0|1111|0000|11|0|111|00|11|00

Every binary string in {0, 1}∗ can be decomposed uniquely into its se-
quence of blocks.

Produce a string block-by-block.

– A block of 1s : {1, 11, 111, . . . } produced by 1∗1 or 11∗ or {1}{1}∗

– A block of 0s: 0∗0.

– A block of 0s followed by a block of 1s: 0 ∗ 01 ∗ 1

– Repeat this pattern arbitrarily often: (0∗01∗1)
∗

– Maybe you start with 1s: (ε ∪ 1∗1) ≡ 1∗

– Maybe you end with 0s: 0∗.

In summary,
1∗ (0∗01∗1)

∗
0∗

is an unambiguous expression for all of {0, 1}∗.
(0 ∪ 1)∗

It leads to:
1

1− x
· 1

1−
(

x
1−x ·

x
1−x

) · 1

1− x
=

1

1− 2x

Generating series for all binary strings.

Example:

L ⊆ {0, 1}∗

no blocks of 0s of length 1.
Blocks of 1s: 1∗1
Blocks of 0s: 00∗0, 0∗00, 000∗

1∗ (0∗001∗1)
∗

(ε ∪ 0∗00)
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block decomposition, hence unambiguous.
Leads to

1

1− x
· 1

1−
(
x2

1−x ·
x

1−x

) · (1 +
x2

1− x

)

=
1− x+ x2

(1− x)
2 − x3

=
1− x+ x2

1− 2x+ x2 − x3

Use recurrence relations to calculate |L10|
Prefix Decomposition
Given a binary string σ, chop it into pieces after each occurrence of the bit

1.

0001|1|001|001|1|1|0001|1|0000

This can be done uniquely.
What do the pieces look like?

(0∗1)∗0∗

leads to
1

1−
(

x
1−x

) · 1

1− x
=

1

1− 2x

.
Prefix Decomposition : A∗B.
Either σ is produced by B or it has a (non-empty) prefix produced by A.
(Do check that it’s unambiguous)
Examples:
L ⊆ {0, 1}∗ no blocks of 0s of length one, again.
adapt either

(0∗1)
∗

0∗ or (1∗0)
∗

1∗

Let’s try (0∗1)
∗

0.

1|1|001|0001|1|001|1|00

What do the pieces look like?
End piece:

ε ∪ 0∗00

Intial pieces:
[ε ∪ 000∗]1

[(ε ∪ (0∗00) 1)]∗ (ε ∪ 0∗00) prefix decomposition for L.
Leads to

1

1− (1 + x2

1−x ) · x
·
(

1 +
x2

1− x

)
=

1− x+ x2

(1− x)− x(1− x+ x2)
=

1− x+ x2

1− 2x+ x2 − x3
Recursive Decomposition:
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• More general than regular expressions.

• Can describe subsets of strings more general than rational languages.

Examples:

S = ε ∪ (0 ∪ 1)S

defines S in terms of itself.
This produces every string in {0, 1}∗ once each.
Leads to

S(x) = 1 + (x+ x)S(x)

(1− 2x)S(x) = 1

S(x) =
1

1− 2x

Examples:

A = {ε, 01, 0011, 000111, 00001111, . . . }
has generating series.

1 + x2 + x4 + x6 + · · · = 1

1− x2

So does
B = {ε, 01, 0101, 010101, . . . }

B is a rational language produced by (01)
∗
.

But A =
⋃∞
k=0 0k1k is not rational.

But A = ε ∪ 0A1 describes A recursively.

11 January 29th

Examples:
Binary strings that don’t contain 0110 as a substring. Call this set A.
Modify a block decomposition:

0∗ (1∗10∗0) 1∗1

ε or a block of 0s.
(1 ∪ 1∗111)
A block of 1s that is not of length 2.
Block of 0s.
ε or a block of 1s.
11000111101 is not produced by 0∗ ((1 ∪ 1∗111) 0∗0)

∗
1∗

How to fix this?
1∗0∗

(
(1 ∪ 1∗111)

∗
0∗0
)∗

1∗ is ambiguous.

(11 ∪ ε) 0∗
(
(1 ∪ 1∗111)

∗
0∗0
)∗

1 is also ambiguous.
Modify the prefix.
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• block of 0s (0∗0)

• 110∗0

• ε

(0∗ ∪ 110∗0) ((1 ∪ 1∗111) 0∗0)
∗

1∗

is unambiguous.
This is a block decomposition for A. So it is unambiguous. It leads to the

generating series.(
1

1− x
+
x2 · x
1− x

)
1

1−
(

1 + x3

1−x

)(
x

1−x

) · 1

1− x

=
1 + x3

(1− x)2 − (x(1− x) + x3)x

=
1 + x3

1− 2x+ x2 − x2 + x3 − x4

A(x) =
1 + x3

1− 2x+ x3 − x4

Examples:
Try avoiding

00111000011010000

: )
Second method:
Recursion.
A: no occurrence of 0110.
B: exactly one occurrence of 0110 at the very end.
Notice that A ∩ B = ∅.
Unknown rational functions: A(x), B(x).
Derive two equations in two unknowns, and solve.
First equation.
Consider a string σ ∈ A ∪ B.

• maybe σ = ε is empty (Note: ε ∈ A)

• If σ 6= ε, then delete the last bit: σ = ρ1 or σ = ρ0 for some string ρ ∈ A.

So A ∪B = ε ∪A (0 ∪ 1)

[Each string in A ∪ B is counted exactly once by this construction]

So A(x) +B(x) = 1 + 2xA(x).
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Second equation:
Let σ ∈ B : σ = α0110 for some α ∈ A.
So B ⊆ A0110.
What about the converse set inclusion: A0110 ⊆ B?
No! 011—0110 is in A0110, but not in B.
If α ∈ A and α0110 is not in B, then what does α0110 look like?
It has to contain a substring 0110 that is not at the very end.
Since 0110 does not occur in α, this ”early” 0110 has to overlap the final

0110 non-trivially. (At least one bit but not all bits.)
Case analysis:

σ
α 0 1 1 0

011 0 . . .
01 01 . . .
0 11 0 . . .

The second overlap is possible.
For the rest, disagreements make these overlaps impossible.
In this case:

σ = α0110 = β110

We saw that B ⊆ A0110. Conversely, A0110 ⊆ B ∪ B110
Let τ ∈ B110.
So τ = α0110|110. Then claim α011 is in A.
If not, then 0110 occurs in α011.
So A0110 = B (ε ∪ 110)
Second equation:

x4A(x) = B(x)(1 + x3)

First equation:
A(x) +B(x) = 1 + 2xA(x)

B =
x4A

1 + x3

A+
x4A

1 + x3
= 1 + 2xA

(1 + x3)A+ x4A = 1 + x3 + 2xA(1 + x3)

A(1 + x3 + x4 − 2x− 2x4) = 1 + x3

A(x) =
1 + x3

1− 2x+ x3 − x4

Finite State MAchines
Application 1: Excluded substrings
S a finite ”alphabet” S = {0, 1}.
S∗ all strings of letters from S.
K a finite subset of S∗
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A ⊆ S∗ : all strings σ ∈ S∗ that do not contain any string in K as a substring.

|S| = d, |Sn| = dn∑
σ∈S∗

xl(σ) =
1

1− dx

How to calculate A(x) =
∑
α∈A x

l(α)?
Example:
Strings in {a, b}∗ avoiding abba.

• Start with ε,

• build strings one letter at a time.

• Be careful if you are getting close to building a forbidden string.

Picture here.
Strings avoiding abba correspond to ways of starting at ε and following the

arrows in the transition diagram.
The number of steps = length of the string
(Can end anywhere)
Examples:
Strings in {a, b, c}∗ avoiding aa, cb, bcc, cab.
Transition table.

Transition Table
States Next States
ε a, b, c
a aa, ab, ac
b ba, bb, bc
c ca, cb, cc
bc bca, bcb, bcc
ca caa, cab, cac

States: ε, single letters, and proper prefixes of forbidden strings.
Cross out the forbidden words, and we only need to keep track of the suffix

of the words.
Pictures here.
Translation into algebra
Define a square matrix M indexed by states, σ1, σ2, . . . , σn

Mij =

{
0 σj → σi is not allowed

1 σj → σi is allowed

This is the transition matrix.
6× 6 transition matrix.
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M =

ε a b ab abb
ε 0 0 0 0 0
a 1 1 1 1 1
b 1 0 1 0 1
ab 0 1 0 0 1
abb 0 0 0 1 0

This is the transition matrix.
Mij is the number of ways to get from state j to state i in exactly 1 step.

Lemma: For all k ∈ N: (M)
k
ij is the number of walks in the transition

diagram from state j to state i with exactly k steps.
Proof:
Induct on k: k = 0,M0 = I k = 1, observation
Basis of induction.
Induction step:

(
Mk+1

)
ij

=

n∑
h=1

(Mih)
(
Mk
)
hj

=

n∑
h=1

(Mih)

Number of k-step walks from σj → σh
= the number of k + 1-step walks σj → σ → σi.

∞∑
k=0

xkMk = (I − xM)−1 = A(x)

Aij(x) is the generating series for all walks in the transition diagram from
state j to state i. (Keeping track of the length) in the exponent of x.

Forbidden abba example:
Starting state ε:

vinit =


1
0
0
0
0


Ending state arbitrary:

vfinal =


1
1
1
1
1


Answer:
Generating series for strings in {a, b}∗ avoiding abba is

G(x) = vTfinal (I − xM)
−1
vinit
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12 Feburary 3rd

Application 2: Domino Tilings
Consider a k×n chessboard. Cover the squares with nonoverlapping dominos

(2 by 1 rectangles)
In how many ways can this be done?
Case k = 3
See pictures.
States: A,B,B′, C, C ′

See pictures.
B and B′ are related by symmetry. Also C and C ′.
Three states
See pictures.
Transition matrix

T =

 t3 t 0
2t2 0 t
0 t2 0


T takes the place of xM from Friday’s class.(
T k
)
ij

sums over all ways to go from state j to state i in k steps, keeping

track of tα when d dominoes have been used.

∞∑
k=0

T k = (I − T )
−1

(
A−1

)
ij

is the usm over all ways to go from state j to state i. (Keeping

track of td when using d dominoes).
Answer:
(I − T )

−1
AA is the generating series we want.

(I − T )
−1

= 1
det(I−T ) · adj(I − T )

I − T =

1− t3 −t 0
−2t2 1 −t

0 −t2 1



det(I − T ) = t

∣∣∣∣1− t3 −t
0 −t2

∣∣∣∣+ 1 ·
∣∣∣∣1− t3 −t
−2t2 1

∣∣∣∣
= −t3

(
1− t3

)
+
(
1− t3

)
· 1− 2t3

= 1− 4t3 + t6

adj (I − T )AA =

∣∣∣∣ 1 −t
−t2 1

∣∣∣∣ = 1− t3
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D3(t) = (I − T )
−1
AA =

1− t3

1− 4t3 + t6

=
∑∞
d=0 cdt

d where cd is the number of 3×n domino tilings with d dominos.
Note: 2d = 3n, n = 2

3d.

Let t = x
2
3 .

D3(x2/3) =
1− x2

1− 4x2 + x4

=

∞∑
n=0

gnx
n

gn = the number of domino tilings of a 3× n rectangle.

n 0 1 2 3 4 5 . . .
gn 1 3 11 41 153 571 . . .

Picture here.
rn: Irreducible pieces with n columns.

n 0 1 2 3 4 5 6 7 8
rn 0 X 3 X 2 X 2 X 2

R(x) = 3x2 +
2x4

1− x2
=

∞∑
n=0

rnx
n

1

1−R(x)
=

1− x2

(1− x2)− (3x2 + 3x4 − 2x4)
=

1− x2

1− 4x2 + x4

13 Feburary 5th

Application 3: Tessellation
Fix integers d, k ≥ 3. Dissect the plane into k-gons, (polygon with k sides)

so that every ”vertex” (corner) is on exactly d of the polygons.
Example:
d = 4, k = 4
Square grid
Pictures here.
Let vn be the number of vertexs that are n steps away from the base vertex.

v∗.
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∞∑
n=0

vnx
n = 1 + 4x+ 8x2 + . . .

= 1 + 4

∞∑
n=1

n · xn = 1 +
4x

(1− x)
2

Examples:
d = 6, k = 3.
Triangular grid
Pictures here.

∞∑
n=0

vnx
n = 1 + 6x+ 12x2 + . . .

= 1 + 6 ·
∞∑
n=1

n · xn

= 1 +
6x

(1− x)
2

Examples:
d = 3, k = 6
Hexagonal grid
Picture here.
d = 3, k = 4

1 + 3x+ 3x2 + x3

d ≥ 3

Hd,k 3 4 5 6 7
3 tetrahedron octagedron Icosahedron triangular grid
4 cube square grid
5 Dodecahedron
6 hexagonal grid

Five Platonic Solids
Three Flat (”Euclidean”) grids
Rest is Hyperbolic Tessellations
Pictures here.
Examples:
k = 4, d = 5
Pictures.
vn = the number of vertices that is n step away from base vertex v∗.
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∞∑
n=0

vnx
n = 1 + 5x+

Distance from v∗ to vertex v is n. v has

• type A : if it has one neighbour at distance n− 1.

• Type B : if it has 2 neighbouts at distance n− 1.

v∗ special type 0. ”Origin”.
For n ≥ 1: an vertices of type A at distance n.
bn vertices of type B at distance n.
Claim:
Every vertex other than v∗ has type A or B.
Then vn = an + bn for n ≥ 1.
Recurrences.
For n ≥ 1:

an+1 =

bn+1 =

Population vector at distance n.
Three types (0, A,B)

pn =

0n
an
bn


p0 =

1
0
0


p1 =

0
5
0


p2 =

 0
10
5


And so on.
The idea is to find this generating series.

∞∑
n=0

0n
an
bn

xn
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14 Feburary 7th

Tessellation: See pictures.
At distance n

Origin O: an =

{
1 n = 0

0 n ≥ 1
. . .
Succession rules:

distance
...

n+ 2
n+ 1
n

n− 1
n− 2

See pictures:

O → 5A

A→ 2A+ 2B

B → 1A+ 2B

But vertices of type B have 2 predecessors.
So this counts them twice each unless we include the factors of 1

2 .
So, for n ≥ 0:

On+1 = 0

an+1 = 5On + 2an + bn

bn+1 = an + bn

Population vectors

pn =

Onan
bn


Pn+1 =

On+1

an+1

bn+1

 =

0 0 0
5 2 1
0 1 1

Onan
bn


with p0 =

1
0
0


By induction on n ∈ N, pn is the population at distance n from the origin.
Total population at distance n is

vn =

1
1
1

T 0 0 0
5 2 1
0 1 1

n 1
0
0
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Generating series:

∞∑
n=0

vnx
n

=

1
1
1

T ( ∞∑
n=0

xnMn

)1
0
0


=

1
1
1

T (I − xM)
−1

1
0
0



(I − xM) =

 1 0 0
−5x 1− 2x −x

0 −x 1− x



det (I − xM) =

∣∣∣∣1− 2x −x
−x 1− x

∣∣∣∣
= (1− 2x)(1− x)− (−x)2

= 1− 3x+ 2x2 − x2

= 1− 3x+ x2 = D

Let A = (I − xM)
−1

.

Notice that (I − xM)
−1

1
0
0

 is the first column of A.

A11 =
1

D

∣∣∣∣1− 2x −x
−x 1− x

∣∣∣∣ = 1

A21 = − 1

D

∣∣∣∣−5x −x
0 1− x

∣∣∣∣ = −
(
−5x (1− x)− 0

1− 3x+ x2

)
=

5x− 5x2

1− 3x+ x2

A31 =
1

D

∣∣∣∣−5x 1− 2x
0 −x

∣∣∣∣ =
5x2

1− 3x+ x2

So

(I − xM)
−1

1
0
0


=

1

1− 3x+ x2

1− 3x+ x2

5x− 5x2

5x2
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So

V (x) =

∞∑
n=0

vnx
n =

(
1− 3x+ x2

)
+
(
5x− 5x2

)
+ 5x2

1− 3x+ x2

=
1 + 2x+ x2

1− 3x+ x2

vn − 3vn−1 + vn−2 =


1 n = 0

2 n = 1

1 n = 2

0 n ≥ 3

v0 = 1

v1 − 3v0 = 2→ v1 = 5

v2 − 3v1 + v0 = 1→ v2 = 15− 1 + 1

vn = 3vn−1 − vn−2(n ≥ 3)

n 0 1 2 3 4 . . .
vn 1 5 15 40 105 . . .

Extract formula via Partial Fractions:

1 + 2x+ x2

1− 3x+ x2
= 1 +

5x

1− 3x+ x2

. . .
Examples:
d = 4, k = 5
See pictures.

15 Feburary 10th

II. Graph Theory
Definition:
A graph is a pair of sets G = (V,E)

• An element of V is a vertex (plural: vertices)

• Elements of E are 2-elements subsets of V , called edges.

Examples:
G = ({1, 2, 3, 4, 5}, {{1, 2}, {1, 3}, {1, 5}, {2, 4}, {3, 5}})
Picture of G:
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We represent vertices by dots and edges by lines connecting the dots.
See Pictures.
Handshake Lemma
For v, w ∈ V , we also write vw for the edge {v, w}.
The degree of v is the number of edges that contain v denoted deg(v).
v, w ∈ V are adjacent, or neighbours if vw ∈ E.
v ∈ V and e ∈ E are incident when v ∈ e, v is an end of e.
Degree Sequence of G is the multiset of vertex degrees (usually given as

a sorted list)
See Pictures.
Same degree sequence doesn’t need to look the same.
Same degree sequence but the ”pattern of connections” are different.
Theorem: (Handshake Lemma)
Let G = (V,E) be a graph. Then∑

v∈V
deg(v) = 2 · |E|

Proof:
Consider the set

X = {(v, e) ∈ V × E : v is incident with e}

Count |X| in two ways

|X| =
∑
v∈V
|{(w, f) ∈ X : w = v}|

=
∑
v∈V

deg(v)

|X| =
∑
e∈E
|{(w, f) ∈ X : f = e}|

=
∑
e∈E

2

= 2 · |E|.

QED.
Corollary:
In a graph G, the number of vertices of odd degree is even.
(Handshake lemma modulo 2)
Examples:

• Empty graph (∅, ∅)
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• Edgeless graphs (V, ∅)

• Complete graphs KV = (V, {vw : v, w ∈ V and v 6= w})
Kn = K{1,2,...,n}

K0 = (∅, ∅).
Picture here.
Paths:
Pn for n ≥ 1.

V (Pn) = {1, 2, . . . , n}

E (Pn) = {{i, i+ 1} : 1 ≤ i ≤ n− 1}

Picture here.
Cycles:
Cn for n ≥ 3

V (Cn) = {1, 2, . . . , n}

E(Cn) = E (Pn) ∪ {{1, n}}

Picture here.
Definition:
Let G = (V,E) and H = (W,F ) be graphs.
An isomorphism from G to H is

• a bijection f : V (G)→ V (H) such that

• ∀v,w ∈ V (G) : {f(v), f(w)} ∈ E(H) if and only if {v, w} ∈ E(G).

If there is an isomorphism from G to H, then G is isomorphic to H, denoted
G ∼= H.

See Picture here.

16 Feburary 12th

Let G and H be graphs. Assume that f : V (G)→ V (H) is an isomorphism.
Necessary conditions on f

• If v ∈ V (G) and w = f(v), then degH(w) = degG(v).

Because f restricts to a bijection from the neighbours of v in G to the
neighbours of w in H.

Set of neighbours NG(v) = {u ∈ V (G) : uv ∈ E(G)}

• If G ∼= H, then they have the same degree sequence.

Terminology:

Given a graph G = (V,E) and subset W ⊆ V of vertices, the subgraph of
G induced by W has
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vertex-set W and

edge-set {e ∈ E(G) : e ⊆W}
Denoted by G[W ] or G|W .

• If f : G → H is an isomorphism, then for all natural numbers d ∈ N,
f restricts to an isomorphism from the subgraph of G induced by the
vertices of degree d to the corresponding subgraph of H.

See pictures.

Structures inside graphs
Let G = (V,E) be a graph.
A subgraph of G is a pair H = (W,F ) such that

• W ⊆ V

• F ⊆ E

• (W,F ) is a graph. (That is, if e ∈ F then e ⊆W ).

Pictures here.
(∅, ∅) is always a subgraph. (V,E) is always a subgraph.
All others are proper subgraphs.
G[W ] for W ⊆ V is an induced subgraph.
H = (W,F ) is a spanning subgraph if W = V . (That is, H uses all vertices

of G)
Edge-Deletion
For S ⊆ E, let G \ S = (V,E \ S).
If S = {e} write G \ e instead of G \ {e}.
Vertex-Deletion
For S ⊆ V , let G \ S = G[V \ S]
If S = {v}, write G \ V instead of G \ {v}.
A spanning cycle is called a Hamilton cycle.
A grid is a ”product” of two paths: Pr�Ps
Pictures here.
V (G�H) = V (G)× V (H)
E(G�H) = ......
Which grids have Hamilton cycles?
Pictures.

17 Feburary 14th

Conjecture
Pr�Ps is Hamiltonian if and only if rs is even.

V (Pr�Ps) = {1, 2, . . . , r} × {1, 2, . . . , s}
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{(x, y), (a, b) ∈ E}

iff
(x− a)2 + (y − b)2 = 1

Assume that r is even.
If rs is even, then assume that r is even (by symmetry). Describe a Hamilton

cycle in Pr�Ps constructively.
If rs is odd, then we have to show that there is no Hamilton cycle in Pr�Ps.
Bipartite Graphs
Let G = (V,E) be a graph.
A bipartition of G is a pair (A,B) of subsets A ⊆ V,B ⊆ V such that

• A ∪B = V and A ∩B = ∅

• every edge e ∈ E has one end in A and one end in B. ( e∩A 6= ∅, e∩B 6= ∅
)

A graph that has a bipartition is a bipartite graph.
Example:
Pr�Ps is bipartite.
Let A = {(x, y) ∈ V : x+ y is even} B = {(x, y) ∈ V : x+ y is odd}
Check: this is a bipartition of Pr�Ps.
Bipartite Handshake Lemma
Let G = (V,E) be a graph with bipartition (A,B). Then∑

v∈A
deg(v) = |E| =

∑
w∈B

deg(w)

Corollary:
Let G be bipartite and regular of degree d ≥ 1.
G is regular if all vertices have the same degree.
Then |V (G)| is even.
Proof:

d|A| =
∑
v∈A

deg(v) =
∑
w∈B

deg(w) = d|B|

Since d ≥ 1, we get |A| = |B|.
So |V | = |A|+ |B| = 2 · |A|.
Lemma:
Let G be bipartite. Then every subgraph of G is bipartite.
Proof:
Let (A,B) be a bipartition of G. Let H = (W,F ) be a subgraph of G.
Now, (A ∩W,B ∩W ) is a bipartition of H.
Corollary:
If G is bipartite and Hamiltonian, then |V (G)| is even.
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Proof:
Let C be a Hamiltonian cycle of G.
Then V (C) = V (G) because C is a spanning subgraph of G. Since G is

bipartite, C is bipartite.
Since C is a cycle, C is 2-regular.
By Corollary 1, |V (C)| is even.
Finally, if rs is odd, then Pr�Ps is not Hamiltonian.
Corollary 3: Cn is bipartite if and only if n is even.

• (Cn is a Hamilton cycle of itself, so if it is bipartite then n is even)

• Conversely, V (Cn) = {1, 2, . . . , n}, E(Cn) = {{i, i+ 1} : 1 ≤ i ≤ n− 1} ∪
{{1, n}}

Picture here.
If n is even, then A = {1, 3, 5, ..., n− 1}, B = {2, 4, 6, . . . , n} is a bipartition,

(A,B) of Cn.
Corollary:
If G contains an odd cycle, then G is not bipartite.
The converse is also true.
(Proof in a couple of weeks)
Walks, Paths and Connectedness
Let G = (V,E) be a graph.
A walk inG is a sequence of verticesW = (v0v1v2 . . . vk) in which vi−1vi ∈ E

for all 1 ≤ i ≤ k.
Picture here.
(qyrywxcxqrcxwp)
Path, walk, trails.

18 Feburary 24th

Walks, Paths and Cycles
G = (V,E) a graph.
A walk is a sequence of vertices W = (v0v1v2 . . . vk) such that vi−1vi ∈ E

for all 1 ≤ i ≤ k.
Each vi−1vi is a step of W .
Length of W is l(W ) = k, number of steps.
A path is a walk with no repeated vertices. (if 0 ≤ i < j ≤ k, then vi 6= vj)
A cycle is a walk with no repeated vertices except that v0 = vk, and k ≥ 3.

(if 0 ≤ i < j ≤ k and vi = vj then i = 0 and j = k)
A walk W is supported on the subgraph with

• Vertices {v0, v1, v2, . . . , vk}

• Edges {v0v1, v1v2, . . . , vk−1vk}

Also,
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• Paths are supported on paths.

• Cycles are supported on cycles.

W = (yzszs) is supported on a path, but not a path.
W = (crsdcr) is supported on a cycle, but not a cycle.
Theorem: ”Shortest walks are paths”
Let G = (V,E) be a graph.
Let v, w ∈ V . Let W be a (v, w)-walk of minimum length.
Remark: A (v, w)-walk is from v0 = v to vk = w.
Then W is a path.
Proof:
Let W = (v0v1v2 . . . vk) be a (v, w)-walk of minimum length.
Suppose W is not a path. There exist 0 ≤ i < j ≤ k with vi = vj .
Now Z = (v0v1 . . . vi = vjvj+1 . . . vk) is a walk of length l(Z) = l(W )− (j −

1) < l(W ) from v0 = v to vk = w.
This contradiction shows that W is a path.
Proposition: (”Two paths make a cycle”)
Let G = (V,E) be a graph.
Let v, w ∈ V be vertices. Let W,Z be distinct paths from v to w.
Then there is a cycle contained in the union of the supports of W and Z.
Proof:
Let W = (v0v1v2 . . . vk) and Z = (z0z1z2 . . . zl) be distinct (v, w)-paths.

(W 6= Z).
Since W 6= Z, there is an index 0 ≤ a < min{k, l} such that v = v0 =

z0, v1 = z1, . . . , va = za but va+1 6= za+1.
Let a < b ≤ k be the smallest index after a such that vb = vc is also on Z.
b exists since vk = zl. Note: a+ 1 ≤ c ≤ l since W is a path.
Claim: (vava+1 . . . vbzc−1zc−2 . . . za) is a cycle.
Ckeck: No repeated vertices except va = za.

19 Feburary 26th

Proposition
Let G = (V,E) be a nonempty graph. If deg(v) ≥ 2 for all v ∈ V , then G

contains a cycle.
Proof:
Let P be a path in G that is as long as possible. (G contains a path since

G is not empty)

P = (v0v1v2 . . . vk)

since all vertices have degree ≥ 2, the length of P is at least 2.
Since deg(vk) ≥ 2, vk has a neighbour w 6= vk−1.
If w is not on P , then

(v0v1 . . . vkw)
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is a path that is longer than P . Contradiction!
So w = vi for some 0 ≤ i ≤ k − 2.
Now, C = (vivi+1 . . . vk−1vkvi) is a cycle.
Connectedness
Let G = (V,E) be a graph.
Let v, w ∈ V .
Say that v reaches w when there exists a (v, w)-walk in G.
(write vRw for short)
This is an equivalence relation on V .

• Reflexive: vRv

• Symmetric: If vRw, then wRv.

• Transitive: If vRw, wRz, then vRz.

Let U1, U2, . . . , Uc be the equivalence classes of R on V .
Each Ui 6= ∅, Ui ∩ Uj = ∅ if i 6= j, U1 ∪ U2 ∪ . . . Uc = V
The (connected) components of G are the subgraphs.

Gi = G[Ui]

induced by the subsets Ui.
Example:
C12(2, 4)
Each connected component is not empty.
G is connected if G has exactly one connected components.
So (∅, ∅) is not connected.
Proposition:
Let G = (V,E) be a graph.
G is connected if and only if there is a vertex of v ∈ V such that for all

w ∈ V , there is a (v, w)-path.
Proof: (Exercise.)
Connectedness and Cuts
Let G = (V,E) be a graph.
For S ⊆ V , let the boundary of S to be the set ∂S = {e ∈ E : |e ∩ S| = 1}

of edges with exactly one end in S.
(Also called the cut of S)
Example:
Picture here.
Theorem:
Let G = (V,E) be a nonempty graph, then G is connected if and only if for

every ∅ 6= S ( V , the boundary ∂S 6= ∅ is not empty.
Proof:
First, assume that G is connected and ∅ 6= S ( V .
Let v ∈ S and w /∈ S. Since G is connected.
There is a (v, w)-walk, W = (v0v1 . . . vk).
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Since v0 = v ∈ S and vk = w /∈ S.
There is an index 1 ≤ i ≤ k such that vi−1 ∈ S and vi /∈ S.
Now, vi−1vi ∈ ∂S.
Second, assume that G is not connected.
Since G 6= (∅, ∅), it has at least two connected components.
Let S be the set of vertices of one component of G. Then ∅ 6= S ( V and

∂S = ∅.

20 Feburary 28th

Midterms covers:
Partial Fractions Decomposition
Before Reading week materials.
Bridges (Cut-edges)
A bridge in a graph G = (V,E) is an edge e ∈ E such that

c(G \ e) > c(G)

Here, c(G) is the number of connected components of G.
Bridges
Conjectures:

• Bridges ⇐⇒ not in a cycle

• Bridge → c(G \ e) = 1 + c(G)

Deleting a vertex can increase number of components arbitrarily.
Reduction to the connected case
Let G be a graph with components.

G1, G2, . . . , Gc

Let e ∈ E(G). Say e ∈ (G1).

• e is contained in a cycle of G iff e is contained in a cycle of G1.

• e is a bridge of G iff e is a bridge of G1.

Propositions:
Let G = (V,E) be a graph and e ∈ E. Then e is a bridge iff e is not contained

in any cycles of G.
Proof:
As above, we may assume that G is connected.
First, assume that e is in a cycle, C.
We want to show that G \ e is connected.
G is connected, it has a vertex, G \ e has same vertex-set, so G \ e is not

empty.
Let u, v ∈ V . Show that u reaches v in G \ e.
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Since G is connected, there is a (u, v)-walk in G.
So there is a path P in G from u to v.
If P doesn’t use e the P is a (u, v)-path in G \ e.
If P does use e, then it uses it once (since path has no repeated vertices).
P : u−−−−−−−−− xy −−−−−−−−−−v
Now, C \ e = Q : x− y is a path in G \ e from x to y.
Now u − − − − − − − −xQy − − − − − − − − − − − v is a (u, v)-walk in

G \ e.
So u reaches v in G \ e.
Therefore, G \ e is connected.
Conversely, if e is not a bridge, then e is in a cycle.
Since e = xy is not a bridge, G \ e is connected.
So x reaches y in G \ e.
So there is an (x, y)-path P in G \ e.
Now, (V (P ), E(P ) ∪ {e}) is a cycle in G containing e.
Proposition:
Let G = (V,E) be a connected graph and e = xy ∈ E a bridge. Then G \ e

has exactly two components X,Y with x ∈ V (X) and y ∈ V (Y ).
Proof:
Let X be the component of G \ e containing x.
Let Y be the component of G \ e containing y.
Show X 6= Y and V (X) ∪ V (Y ) = V (G).
If X = Y , then there is (x, y)-path P in G \ e.
Now P ∪ {e} is a cycle of G containing e.
Previous proposition Rightarrow e is not a bridge. Contradiction!
Thus, X 6= Y .
Consider any z ∈ V (G).
There is a path, P , from x to z in G, since G is connected.
If P doesn’t use e, then P is in G \ e, so z ∈ V (X).
Since P has no repeated vertices, e is the first edge of the path P : xy.......z.
Now, we have a (y − z)-path in G \ e.
So z ∈ V (Y ).

21 March 2nd

Trees.
Midterms. 90 Enumeration.
A graph G = (V,E) is minimally connected if G is connected and for every

e ∈ E, G \ e is not connected.
G is connected and every edge is a bridge.
Proposition:
G is minimally connected if and only if G is connected and contains no cycles.
Proof (Exercise):
A graph G = (V,E) is a tree if it is connected and contains no cycles.
Small Trees
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See pictures.
A leaf is a vertex of degree 1.
Proposition:
A tree T with at least two vertices has at least two leaves.
Proof:
Let P be a longest path in T .
P : (v0v1 . . . vk). Then l(P ) ≥ 1 since |V (T )| ≥ 2. and T is connected.
Now, both v0 and vk must be leaves.
Pictures.
Proposition:
A graph G = (V,E) is a tree if and only if it is nonempty and for all vertices

v, w ∈ V , there is exactly one (v, w)-path in G.
Proof:
First assume that G is a tree. Let v, w ∈ V .
Since G is connected, there is a (v, w)-path in G.
If there were ≥ 2 (v, w)-paths in G, then G would contain a cycle (by a

previous Proposition).
Since G is a tree, this does not happen.
Second, assume that G is (nonempty and) not a tree.
So either G has c(G) ≥ 2 components, or G contain a cycle.
If c(G) ≥ 2, then let v, w ∈ V be in different components of G. There is no

(v, w)-path in G.
If C = (v0v1v2 . . . vkv0) is a cycle in G.
Then, v0 6= vk and (v0v1 . . . vk) and (v0vk) are two different paths from v0

to vk in G.
A graph is a forest if it does not contain any cycles.
Any connected component of a forest is a tree.
Theorem:
Let G = (V,E) be a graph with |V | = n vertices, |E| = m edges, and

c(G) = c components. Then,
m ≥ n− c

with equality if and only if G is a forest.
Proof:
By induction on |E| = m.
Basis: m = 0.E = ∅.
So G has n vertices, 0 edges, c = n components.
0 ≥ n− n. Equality holds and Kc

n is a forest.
Induction hypothesis
If G′ is a graph with |V ′| = n′, |E′| = m′, c(G′) = c′ components and m′ < m

then m′ ≥ n′ − c′ and equality holds iff G′ is a forest.
Induction Step
G is as in the statement with |E| = m ≥ 1.
Let e ∈ E be an edge of G.
Now e is either a bridge in G or it is not.
Let G′ = G \ e
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n′ = n,m′ = m− 1, c′ =

{
c if e is not a bridge

c+ 1 if e is a bridge

In either case, G′ satisfies m′ ≥ n′ − c′ with equality if and only if G′ is a
forest.

Case 1: e is a bridge.
Now m = m′ + 1 ≥ (n′ − c′) + 1 = n′ − (c′ − 1) = n− c
Proving the desired inequality.
Notice that m = n− c if and only if m′ = n′ − c′
By induction, this happens if and only if G′ is a forest.
Lemma:
Let H be a graph and e ∈ E(H) a bridge.
Then H is a forest if and only if H \ e is a forest.
Proof: (Exercise).
Case 2:
e is not a bridge.
Now m = m′ + 1 ≥ (n′ − c′) + 1 = (n− c) + 1 > n− c
Proving the desired inequality strictly.
Since e is a beidge in G, e is in a cycle of G, so G is not a forest.
Corollary:
c = 1 case of the Theorem.
A graph G is a tree iff it is connected and has |E| = |V | − 1.
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Corollary
If G = (V,E) is a connected graph with |V | = n vertices and |E| = m edges,

then m ≥ n− 1, with equality if and only if G is a tree.
Numerology of Trees
Let T = (V,E) be a tree with n vertices, m = n− 1 edges.
Let nd be the number of vertices of degree d, for each d ∈ N.

|V | = n = n0 + n1 + n2 + n3 + . . .

By the Handshake Lemma,

2|E| = n1 + 2n2 + 3n3 + . . .

Since
2|V | = 2 + 2|E|

(Since T is a tree)

2(n0 + n1 + n2 + n3 + . . . ) = 2 + n1 + 2n2 + 3n3 + . . .

2n0 + n1 = 2 + n3 + 2n4 + 3n5 + . . .

If n = 1, then n0 = 1 and nd = 0 for all d ≥ 1.
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If n ≥ 2, then n0 = 0 since T is connected.
So for a tree, T with n ≥ 2 vertices,

n1 = 2 + n3 + 2n4 + 3n5 + · · · ≥ 2

Spanning Trees
Let G = (V,E) be a graph. A spanning tree of G is a subgraph. T = (V, F )

that is

• spanning

• and a tree

Proposition:
Let G = (V,E) be a graph. Then G has a spanning tree if and only if G is

connected.
Proof:
IfG has a spanning tree, thenG is connected, since T is a connected spanning

subgraph of G.
Conversely, we go by induction on |E|. Fix |V | = n.
Basis of induction:
|E| = n− 1. Then G is a tree.
So G is a spanning tree of itself.
Induction Step:
Let G be connected with |V | = n vertices and |E| > n− 1 edges.
So G is connected but not a tree.
So G contains a cycle C.
Let e be an edge of C.
So e is not a bridge of G.
So G \ {e} is connected, with |E(G \ {e}| = |E| − 1).
By induction, G \ {e} has a spanning tree T .
Since G \ {e} is a spanning subgraph of G,T is also a spanning tree of G.
Theorem:
A graph G = (V,E) is bipartite if and only if it does not contain an odd

cycle.
Proof:
We have seen that if G contains an odd cycle, then G is not bipartite.
Claim:
We can reduce to the case that G is connected.
So assume that G is connected and not bipartite.
Since G is connected, it contains a spanning tree T .
G.
Lemma:
Since T is a tree, it has a bipartition (A,B).
Proof: (Exercise)
(Induct on |V (T )| by deleting a leaf.)
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Since G is not bipartite, there is an edge e = vw ∈ E of G with both ends
on the same side - both ends in A, say.

Since T is a tree, there is a unique path P in T from v to w.
Since (A,B) is a bipartition of T and both v, w ∈ A, the path P has an even

number of edges.
Now (V (P ), E(P ) ∪ {vw}) is an odd cycle in G.
Two-out-of-Three Theorem
Let G = (V,E) be a graph with |V | = n vertices and |E| = m edges.
Consider the following three properties.

1. G is connected.

2. G has no cycles.

3. m = n− 1.

Any two of these properties imply the other one.
Proof:
(1) and (2) imply (3).
Assume that G is connected and has no cycles.
So m = n− 1 by the Corollary at the start of today.
(1) and (3) imply (2)
Assume that G is connected and m = n− 1.
So G is a tree by the Corollary at the start of today.
(2) and (3) imply (1)
Look at each connected component of G.

23 May 6th

Let G satisfy (2) and (3).
Let G1, G2, . . . , Gc be the connected components of G.
Each connected component G satisfies (1) and (2).
So Gi has ni vertices and mi edges and mi = ni − 1 (Since we know that

(1) and (2) ⇒ (3).
Now, sinceG satisfies (3), 1 = n−m = (n1+n2+· · ·+nc)−(m1+m2+· · ·+mc)

= (n1 = m1) + (n2 −m2) + · · ·+ (nc −mc) = c
So G is connected.
Search Trees
Is there a walk (or a path) in G from v∗ to z?
Algorithm
Input graph G = (V,E) and ”root” vertex v∗ ∈ V .
Let W = {v∗} and let F = ∅.
Let pr(v∗) = null and l(v∗) = 0.
Let ∆ = ∂W = {e ∈ E : |e ∩W | = 1}
while ∆ 6= ∅
Pick any e = xy ∈ ∆ with x ∈W and y /∈W .
Update F := F ∪ {e} and W := W ∪ {y}
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pr(y) := x and l(y) = 1 + l(x).
Recalculate ∆ = ∂W .
Output:
T = (W,F ) and pr: W →W ∪ {null} and l : W → N.
Picture here.
Theorem:
With the above notation.

1. T = (W,F ) is a spanning tree for the component of G that contains v∗.

2. For all w ∈W , the unique path from w to v∗ in T is obtained by following
the steps v → prv until pr(v) = null.

3. The length of this path is l(w).

Proof:
Claim: T = (W,F ) is a tree and (2) and (3) holds.
By induction on the number of iterations of the ”while (∆ 6= ∅)” loop.
Basis: W = {v∗}, F = ∅, and T = ({v∗}, ∅) is a tree. pr and l are defined

on W and (2) and (3) hold.
Consider e = xy ∈ ∆ with x ∈W and y /∈W .
Let W ′, F ′, pr′, l′ be the updated data.
By induction, (W,F ) is a tree. Connected and |F | = |W | − 1.
Now, (W ′, F ′) is connected and |F ′| = |W ′| − 1.
By 2-out-of-3 THeorem, T ′ = (W ′, F ′) is a tree.
Check (b) and (c) for y.
Claim: T is a spanning tree for the component of G that contains v∗.
Show: If v∗ reaches z ∈ V in G, then z ∈W .
Suppose not.
Suppose z ∈ V is such that v∗ reaches z but z /∈W .
Let Z be a walk from v∗ to z in G.
v∗ ∈W and z /∈W .
There is a step xy of z with x ∈W and y /∈W .
But now xy ∈ ∆, contradicting ∆ = ∅ because the algorithm terminated.
Application:

1. Finding components.

2. Finding paths between vertices (in a connected graph).

3. Finding cycles.

4. Testing bipartiteness
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Planar Graphs
Which graphs can be drawn in the plane R2 without crossing edges?
P = {pv : v ∈ V } distinct points in R2 representing vertices.
Γ = {γe : e ∈ E} distinct (simple) curves in R2 representing edges.

• If e = xy, then γe has endpoints px and py.

• Edges don’t cross.

• Other conditions.

Small examples
Complete graphs.
See picture.
Complete Bipartite Graphs.
See picture.
A graph G is planar if it has a plane embedding.
Lemma:
Every subgraph of a planar graph is planar.
Subdivision
Let G = (V,E) be a planar graph, e = xy ∈ E, and z /∈ V .
The subdivision of e in G is G · e.
Vertex-set

V (G · e) = V (G) ∪ {z}

Edge-set
E(G · e) = (E(G) \ {e}) ∪ {xz, yz}

Repeated subdivision: do this 0 or more times.
Lemma:
G = (V,E) is planar if and only if G · e is planar.
Shape of the Proof:
First, assume that G is planar.
Let (P,Γ) be a plane embedding of G.
Construct a plane embedding of G · e.
Let γe : [0, 1]→ R2 be the simple curve γe ∈ Γ representing e.
(γe is a continuous (tame) injective function)
Let pz = γe

(
1
2

)
.

Define:
γxz : [0, 1]→ R2 by γxz(t) = γe(

t
2 )

γxz(0) = γe(0) = px γxz(1) = γe(
1
2 ) = pz

Similarly, γyz : [0, 1]→ R2, γyz(t) = γe(1− t
2 ), γyz(0) = γe(1) = py, γyz(1) =

γe(
1
2 ) = pz
Check:
This gives a planar embedding of G · e.
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Converse:
Given a plane embedding of Γ · e. Construct a plane embedding of G.
Conjecture
If G contains a (repeated) subdivision of K5 or K3,3, then G is not planar.
Proof:
(Wednesday: K5 and K3,3 are not planar.)
Kuratowski’s Theorem (1930)
A graph is planar if and only if it does not contained a subdivision of K5 or

K3,3 as a subgraph.
”Kuratowski subgraphs”.
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Last time: K5 and K3,3 are non-planar.
Faces of plane embedding
Let G = (V,E) be a plane embedded graph and let F be a face of G.

The boundary of F is the subgraph of G consisting of the vertices and vertices
incident to F .

The degree of F is the number of edges in the boundary plus the number
of bridges in the boundary.

Lemma: An edge e of a planar embedded graph G is a bridge iff the faces
on either side of e are the same face.

Theorem:
Let G = (V,E) be a planar embedded graph and let F be the set of faces.

Then ∑
F∈F

deg(F ) = 2|E|

The faceshaking Lemma (FSL)
Proof:
When we sum the degrees of the faces, we are counting every edge twice.
Theorem: (Euler’s Formula)
Let G = (V,E) be a planar embedded graph with n vertices, m edges, f

faces and c components.
Then

n−m+ f = c+ 1

Proof:
We proceed by induction on m. If m = 0, then f = 1 and c = n.
Let m ≥ 1, suppose that the formula holds for plane embedded graphs with

fewer than m edges. Let e ∈ E and consider G′ = G \ e. G′ has n vertices,
m− 1 edges.

Let f ′ be the number of faces and c′ be the number of components. Then

n− (m− 1) + f ′ = c′ + 1 (∗)

If e is a bridge, then c′ = c+ 1 and f ′ = f
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Then (∗) gives n−m+ 1 + f = c+ 2.
If e is not a bridge, then c′ = c and

f ′ = f − 1

, so (∗) gives n−m+ 1 + f − 1 = c+ 1.
Theorem:
Let G = (V,E) be a connected planar graph with n ≥ 3 vertices and m edges.

Then m ≥ 3n− 6 and equality holds iff every face in every plane embedding of
G has degree 3.

Proof:
Let F be the set of faces in a plane embedding of G, and let f = |F|.
Since n ≥ 3, every face has degree at least 3.
Therefore,

2m =
∑
F∈F

deg(F ) ≥ 3f ⇒ f ≥ 2m

3

By Euler’s Formula,
n−m+ f = 2

⇒ m = n+ f − 2 ≤ n+
2m

3
− 2

. . .
m ≤ 3n− 6.
(Proof by Exercise)
Equality holds iff 2m = 3f iff every face has degree 3.
Claim: K5 is non-planar.
Proof: K5 is connected with 5 vertices, and

(
5
2

)
= 10 edges. 3·5−6 = 9 < 10.
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Numerology of PLanar Graphs
Let G = (V,E) be a graph with a plane embedding (P,Γ).
|V | = n vertices, |E| = m edges, |F| = f faces, c(G) = c components.

1. Handshake: 2m =
∑
v∈V deg(v)

2. Faceshaking: 2m =
∑
F∈F deg(F )

3. Euler’s Formula: m− n+ f = c+ 1

Lemma: If G has at least two edges, then every face of every plane embed-
ding of G has degree at least 3.

Proof:
Induct on |E|. Exercise.
If G is connected and |V | ≥ 3, then |E| ≥ 2.
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Corollary: If G is planar and connected, then |E| ≤ 3|V | − 6 with equality
iff every face of every embedding of G has degree 3.

Proof:
Consider any plane embedding of G.

2m =
∑
F∈F

deg(F ) ≥ 3f

by the Lemma.
Multiply Euler’s Formula by 3:

6 = 3(c+ 1) = 3n− 3m+ 3f ≤ 3n− 3m+ 2m = 3n−m

So m ≤ 3n− 6.
Corollary: K5 is not planar.

|E| = 10 6< 9 = 3|V | − 6

Corollary: If G is connected, planar, |V | ≥ 3, with no 3-cycles.
Then |E| ≤ 2|V | − 4 with equality if and only if every face of every plane

embedding of G has degree 4.
Proof:
Consider any plane embedding. All faces have degree at least 4.
Faceshaking lemma: 2m ≥ 4f .
Multiply Euler’s Formula by 4: 8 = 4(c+ 1) = 4n− 4m+ 4f ≤ 4n− 2m
So m ≤ 2n− 4, statement about equality also follows.
Example: K3,3 is not planar.

|E| = 9 6≤ 8 = 2 · |6| − 4

Let (P,Γ) be a plane embedding of a graph G = (V,E).
|V | = n ≥ 3, |E| = m, |F| = f, c(G) = 1
Say there are nd vertices of degree d ∈ N.
n0 = 0 since G is connected and |V | ≥ 3.
Euler’s Formula:

n+m− f = 2

n = n1 + n2 + n3 + n4 + . . .

2m = n1 + 2n2 + 3n3 + 4n4 + . . .

Since every face has degree ≥ 3:

2m =
∑
F∈F

deg(F ) ≥ 3f

Multiply Euler’s Formula by 6.
(Equality iff every face has degree 3).
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12 = 6(c+ 1) = 6n+ 6m− 6f ≤ 6n− 2m

12 ≤ 6(n1 + n2 + . . . )− (n1 + 2n2 + 3n3 + . . . )

5n1 + 4n2 + 3n3 + 2n4 + n5 ≥ 12 + n7 + 2n8 + 3n9 + . . .

Equality iff every face of every planar embedding has degree 3.
Exercise. What is the analogue if G has no 3-cycles?
Exercise: What is the analogue counting faces of degree d instead of vertices

of degree d?
(Require all vertices to have degree ≥ k).
Corollary: If G is a connected planar graph, then G has a vertex of degree

at most 5.
Platonic Solids
Let k ≥ 3 and d ≥ 3.
When is there a (finite) plane embedding in which

• G is connected

• Every vertex has degree d.

• Every face has degree k.

We have

• Handshake: dn = 2m, So n = 2m/d

• Faceshaking: fk = 2m, So f = 2m/k

• Euler’s Formula: n+m− f = 2,

2m

d
+

2m

k
= 2 +m

So
1

d
+

1

k
=

1

2
+

1

m
>

1

2

See pictures.
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